A THEOREM OF DYNAMICS

(ODMA STIORRMA DINAMCKI)

PMM Vol.28, Na, 1964, pp.1138-1139
A.I. Lure
(Leningrad)
(Received July 10, 1964)

We are considering a system of two rigid bodies S_{2} and S_{2}, where the body S_{a} can rotate about its center of inertia C_{2}, which is fixed in S_{1}. The system is assumed to be isolated, which means that both the principai vector of the external forces V and the principal moment of the external forces m° about an arbitrary point 0 , are equal zero. When such a system moves in an inertial system of coordinates its principal vector Q and its principal vector of angular momentum K remain invariant.

Let us consider two kinds of motion; in the first one ($1+2$) the bodies S_{1} and S_{2} form a single body, in the second one (2) the body S_{2} activated by internal forces rotates with respect to S_{1}. Under the above conditions we have the following theorem: the difference of the kinetic energies

$$
\begin{equation*}
T_{(2)}-T_{(1+2)} \geqslant 0 \tag{1}
\end{equation*}
$$

In other words, to maintain the initiated motions we must expend energy, hence the notion that we can transfer the energy from the body S_{1} to the body S_{2} and utilize it for useful work is faulty (*).

The proof is based on direct calculation of the difference (I) when Q and \mathbb{x}^{0} remain constant. Let $r=O C$ be the radius vector of the center of inertia C_{1} of the body $S_{1} ; v$ be the velocity vector of $C_{1} ; \omega$ be the angular velocity vector of the body S_{1}. Then

$$
\begin{equation*}
\mathbf{Q}_{1}=m_{1} \mathbf{v}, \quad \mathbf{K}_{1}^{\circ}=\mathbf{r} \times \mathbf{Q}_{1}+\theta^{c_{1}} \cdot \omega, \quad 2 T_{1}=m_{1} v^{2}+\omega \cdot \theta^{c_{1}} \cdot \omega \tag{2}
\end{equation*}
$$

Where m_{1} is the mass, $\theta^{c_{1}}$ is the inertia tensor of S_{1} at the point C_{1}. Calling $\rho=C_{1} C_{2}$ the radius vector of the point C_{2} with respect C_{1} we have also

$$
\begin{equation*}
2 T_{2}=m_{2}|v+\omega \times \rho|^{2}+\left(\omega+\omega_{r}\right) \cdot \theta^{\omega_{2}} \cdot\left(\omega+\omega_{r}\right) \tag{3}
\end{equation*}
$$

where ω_{r} is the angular velocity vector of the body S_{2} with respect to S_{1}. Using the relation $\mathbf{Q}_{\mathbf{1}}+\mathbf{Q}_{\mathbf{a}}=\mathbf{Q}$ we can determine \mathbf{V}, hence $\mathbf{Q}_{\mathbf{a}}$ and \mathbf{Q}_{2}. After that we find

$$
\begin{equation*}
\mathbf{K}^{\circ}=\mathbf{K}_{1}^{\circ} \& \mathbf{K}_{2}^{\circ}=\mathbf{R} \times \mathbf{Q}+\boldsymbol{\theta}_{1} \cdot \omega+\boldsymbol{\theta}_{2} \cdot\left(\omega+\omega_{r}\right) \tag{4}
\end{equation*}
$$

[^0]Here $\quad 2 T_{(2)}=2\left(T_{1}+T_{2}\right)=\frac{Q^{2}}{m_{1}+m_{2}}+\omega \cdot \theta_{1} \cdot \omega+\left(\omega+\omega_{r}\right) \cdot \theta_{2} \cdot\left(\omega+\omega_{r}\right)$

$$
\begin{equation*}
\theta_{1}=\theta^{c_{1}}+\frac{m_{1} m_{2}}{m_{1}+m_{2}}(E \rho \cdot \rho-\rho p), \quad \theta_{2}=\theta^{c_{2}}, \quad \mathbf{R}=\mathbf{r}+\frac{m_{1} m_{2}}{m_{1}+m_{2}} \rho \tag{6}
\end{equation*}
$$

(R is the radius vector $O C$ of the center of inertia C of the whole system, E is a unit tensor, $\rho \cdot \rho$ is the scalar product, $\rho \rho$ is the dyadic product.).

Denoting the angular velocity vector of the system S_{1}, S_{2} by ω^{6}, when $\omega_{r}=0$, we have

$$
\begin{equation*}
\mathbf{K}^{c}=\mathbf{K}^{\circ}-\mathbf{R} \times \mathbf{Q}=\left(\theta_{1}+\theta_{2}\right) \cdot \omega^{\circ}=\theta_{1} \cdot \omega+\theta_{2} \cdot\left(\omega+\omega_{r}\right) \tag{7}
\end{equation*}
$$

and further

$$
\begin{equation*}
2\left(T_{(2)}-T_{(1+2)}\right)=\omega \cdot\left(\theta_{1}+\theta_{2}\right) \cdot \omega+\hat{\omega}_{r} \cdot \theta_{2} \cdot \omega_{r}+2 \omega \cdot \theta_{2} \cdot \omega_{r}-\omega^{0} \cdot\left(\theta_{1}+\theta_{2}\right) \omega^{0} \tag{8}
\end{equation*}
$$

But according to (7) (*)

$$
\begin{equation*}
\omega^{\circ}-\omega=\left(\theta_{1}+\theta_{2}\right)^{-1} \cdot \theta_{2} \cdot \omega_{r}=\omega_{r} \cdot \theta_{2} \cdot\left(\theta_{1}+\theta_{2}\right)^{-1} \tag{9}
\end{equation*}
$$

Here $\left(\boldsymbol{\theta}_{1} \& \boldsymbol{\theta}_{2}\right)^{-1}$ is the tensor with the matrix of components, which equals the inverse matrix of components of the tensor $\Theta_{1}+\theta_{2}$. Using (7) and (8) and performing substitutions in (8) we obtain

$$
\begin{gather*}
2\left(T_{(2)}-T_{(1+2)}\right)=\omega_{r} \cdot \theta_{2} \cdot \omega_{r}-\left(\omega^{\circ}-\omega\right) \cdot\left(\theta_{1}+\theta_{2}\right) \cdot\left(\omega^{\circ}-\omega\right)= \\
=\omega_{r} \cdot\left[\theta_{2}-\theta_{2} \cdot\left(\theta_{1}+\theta_{2}\right)^{-1} \cdot \theta_{2}\right] \cdot \omega_{r}=\omega_{r} \cdot Q \cdot \omega_{r} \tag{10}
\end{gather*}
$$

where Q is the tensor shown in the brackets. In matrix notation we have

$$
\begin{equation*}
\mathbf{Q}=\theta_{2}-\theta_{2}\left(\theta_{1}+\theta_{2}\right)^{-1} \theta_{2}, \quad\left(\theta_{1}+\Theta_{2}\right) \theta_{2}-1 \mathbf{Q}=\theta_{1}+\theta_{\mathbf{2}}-\theta_{\mathbf{2}}=\theta_{1} \tag{11}
\end{equation*}
$$

and further

$$
Q=\left(\Theta_{1}^{-1}+\Theta_{2}^{-1}\right)^{-1}
$$

and, since $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$ are positive definite matrices, such must we also $Q_{\text {. }}$ The theorem is proved. It is valid independently of the size of the bodies, of their angular velocities, and also of the character of the forces of mutual action between the bodies. The simple formula which follows is of interest

$$
\begin{equation*}
T_{(2)}-T_{(1+2)}=1 / 2 \omega_{r} \cdot\left(\theta_{1}^{-1}+\theta_{2}^{-1}\right)^{-1} \cdot \omega_{r} \tag{12}
\end{equation*}
$$

*) In matrix notation these equations are written in the form

$$
\omega^{\circ}-\omega=\left(\Theta_{1}+\theta_{2}\right)^{-1} \Theta_{2} \omega_{r}, \quad\left(\omega^{\circ}-\omega\right)^{\prime}=\omega_{r}^{\prime} \Theta_{2}\left(\theta_{1}+\theta_{2}\right)^{-1}
$$

where prime denotes a transpose of a matrix.

[^0]: *) This note resulted from the study of a proposed invention of an engine designed to use the energy of Earth's rotation through a certain gyroscopic contraption.

